

Mark Scheme (Results)

Summer 2021

Pearson Edexcel International Advanced Level In Statistics S2 Paper WST02/01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.edexcel.com. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2021

Question Paper Log number P63151A

Publications Code WST02_01_2106_MS

All the material in this publication is copyright

© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer

Question	Scheme			Marks
Number				
1. (a)	roughout the paper the candidates may use different letters to the ones given in the mark scheme. [$X \sim \text{the number of pansy seeds that do not germinate or } Y = \text{the numberthat } \underline{\text{do germinate}}$			
(u)				B1
(i)	$P(X \le 4) - P(X \le 2) = 0.9974 - 0.9$	245 or		
	$\binom{20}{3}0.05^{3} \times 0.95^{17} + \binom{20}{4}0.05^{4} \times 0.95^{16} = 0.05958 + 0.01332$			M1
	= 0.072909		awrt 0.0729	A1
(ii)	$P(X \leqslant 1)$ or $P(Y \geqslant 19)$	$=20\times(0.95)^{19}(0.05)+(0.95)^{2}$	0	M1
		= 0.735839	awrt 0.736	A1 (5)
(b)				
(b)	[Let $W = \text{no. of packets where } Y >$	() (,	M1
		= 0.21573	awrt <u>0.216</u>	A1
				(2)
(c)	$H_0: p = 0.05$ $H_1: p > 0.05$			B1
, ,				(1)
(4)			(-)	
(d)	[V= no. of seeds that do not germinate of seeds that do not	 I	·	M1A1
		CR for 1-tail in (c)	CR for 2-tail in (c)	
	$P(V \geqslant 8) = 1 - P(V \leqslant 7)$	$P(V \ge 9) = 0.0681$	$P(V \ge 10) = 0.0318$	M1
	= 1 - 0.8666	$P(V \ge 10) = 0.0318$	$P(V \geqslant 11) = 0.0137$	
	- 0.1334	CK V / 10 0e	CK V / 11 0e	A1
	Accept H_0 or not significant or 8 Data consistent with <i>Spany</i> 's claim			dM1 A1cso
	= 7			(6)
	or insufficient evidence that percentage of seeds not germinating is more than 5% (o.e.)			Total 14
	P4 :: 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 :	Notes	1 1 (* 17 * 1, 14 4	
(a)	B1: writing or using B(20,0.05) [• • •	•
(i)	M1: for $P(X \le 4) - P(X \le 2)$ and	_	_	•
(ii)	M1: for $P(X \le 1)$ or $[20] \times (0.95)$	$(0.05)^{19} (0.05) + (0.95)^{20}$ - condone n	nissing 20	
(b)	M1: for $(their(a)(ii))^5$			
	,			
(c)	B1: both hypotheses correct with <i>p</i>	or π		
(d)	1 st M1: for realising a Poisson approximation is appropriate. NB Po(95) is M0A0 1 st A1: writing or using $V \sim \text{Po}(5)$ i.e correct mean for the Poisson.			
	2^{nd} M1: for writing or using $1-P$ (
	or writing $P(V \ge 10) = 0.0318$ or $P(V \ge 9) = 0.0681$ or $P(V \ge 11) = 0.0137$ leading to a CR.			
	Implied by correct CR or pr		1	1
	2nd A1 : for awrt 0.133 or $V \ge 10$ or	_	-	_
	3rd dM1 : dep on 2 nd M1. ft their CR	•	1 0	
	or their prob with 0.05 or 0.025 [condone 0.866<0.95]—contradicting non-contextual comments M0 3 rd A1 cso: all previous marks must be awarded. A correct statement in context. Need Bold words.			
	NB award M1A1 for a correct contextual statement on its own.			
	If there are no hypotheses or they are the wrong way around, then 3 rd M0 3 rd A0			
SC1	Normal approximation: Award marks in pairs with 2, 4 or 6 marks available			
0.02	Sight of N(5 or 95, $\sqrt{4.75}^2$) M1A1; probability awrt 0.125/6 M1A1; Correct contextual concl' dM1A1 No approximation: Use of B(100, 0.05) M0A0; probability awrt 0.128 or CR \geqslant 10 M1A1; then M0A0			
SC2	No approximation: Use of B(100,	U.US) MUAU; probability awrt	0.128 or CK $\geqslant 10$ M1A1; the	en MUAU

Question Number	Scheme			
2. (a)	$[X = \text{number of faults in 4 m}^2 \text{ so } X \sim \text{Po}(3)]$			
	$P(X = 5) = P(X \le 5) - P(X \le 4) [= 0.9161 - 0.8153]$ or $\frac{e^{-3}3^5}{5!}$ (allow λ instead of 3)	M1		
	= 0.1008	A1	(2)	
(b)	[$Y = \text{number of faults in } 6 \text{ m}^2 \text{ so}$] $Y \sim \text{Po}(4.5)$ and $\left[P(Y > 5)\right] = 1 - P(Y \leqslant 5)$ [$= 1 - 0.7029$] $= 0.2971$ or (calc) 0.29706956 awrt 0.297	M1 A1	(2)	
(c)	0.101 (or ft their answer to (a)) Faults occur independently/ randomly	B1ft B1	(2)	
(d)	[$F = \text{number of faults in a small rug}$] $F \sim \text{Po}(0.9)$	B1		
	$e^{-"0.9"}n \times 80 + (1 - e^{-"0.9"})n \times 60 \ge 4000$ or $(awrt 0.407)n \times 80 + (awrt 0.593)n \times 60 \ge 4000$	M1		
	$n \geqslant \frac{4000}{20a^{-0.90} + 60} = 58.71$	M1		
	n = 59	A1		
			(4)	
(e)	$H_0: \lambda = 9$ $H_1: \lambda > 9$	B1		
	$R \sim \text{Po}("0.9" \times 10) \text{and} [P(R \geqslant 13)] = 1 - P(R \leqslant 12) [= 1 - 0.8758]$			
	$P(R \le 13) = 0.9261 \text{ or } P(R \ge 14) = 0.0739 \text{ or } P(R \le 14) = 0.9585 \text{ or } P(R \ge 15) = 0.9585 $	M1		
	0.0415			
	$[P(R \ge 13)] = 0.1242 \text{ awrt } 0.124 \qquad \text{or} \qquad CR R \ge 15 \text{ (oe)}$	A1		
	so insufficient evidence to reject H ₀ /not significant/ not in critical region There is insufficient evidence that the rate at which foults occur is higher for Phiermon	M1 A1		
	There is insufficient evidence that the rate at which faults occur is higher for Rhiannon	AI	(5)	
		Tota		
(a)	Notes			
(4)	M1: for using or writing $P(X \le 5) - P(X \le 4)$ or $\frac{e^{-\lambda} \lambda^5}{5!}$ (Accept letter λ or any value of	'λ)		
(b)	M1: writing or using Po(4.5) and sight of $[P(Y > 5)] = 1 - P(Y \le 5)$ Implied by sight of $1 - 0.7029$			
(c)	2 nd B1: for a comment about faults occurring randomly/independently or Poisson has "no memory"			
(d)				
	2^{nd} M1: for solving their equation leading to a positive value of n . Allow any value of λ and all A1: for an answer of 59 only	low <i>n</i> =	·	
(e)	B1: both hypotheses correct with λ or μ . Allow 3 or 0.75 or 0.9 instead of 9 1 st M1: for writing or using Po("9") and writing or using $1 - P(R \le 12)$ (implied by $1 - 0.8758$)			
	$P(R \le 13) = 0.9261, \ P(R \ge 14) = 0.0739, \ P(R \le 14) = 0.9585, \ P(R \ge 15) = 0.0415 \ $ CR	ing to a	l	
	 1st A1: for probability = awrt 0.124 or CR of R ≥ 15 oe e.g. R > 14 2nd M1: for a correct conclusion based on their prob & 0.05 or their CR & 13. Assume correct hypotheses. Do not allow contradicting conclusions 			
	2nd A1: dep on both Ms for a correct contextual comment including the words in bold.			
	· · · · · · · · · · · · · · · · · · ·			

Question Number	Scheme	Marks	
3. (a)	12/25 -	M1	
		A1 (2)	
(b)	$\frac{d\left(\frac{3}{50}(4y^2 - y^3)\right)}{dy} = \frac{3}{50}(8y - 3y^2)$	M1	
	$\frac{3}{50}(8y-3y^2)=0$; $y=\frac{8}{3}$ oe	M1; A1	
(c)	$E(Y^{2}) = \int_{1}^{2} \left(\frac{6}{25} y^{3} - \frac{6}{25} y^{2} \right) dy + \int_{2}^{4} \left(\frac{12}{50} y^{4} - \frac{3}{50} y^{5} \right) dy$	(3) M1	
	$= \left[\frac{6}{100}y^4 - \frac{6}{75}y^3\right]_1^2 + \left[\frac{12}{250}y^5 - \frac{3}{300}y^6\right]_2^4$	A1	
	$= \left[\left(\frac{8}{25} \right) - \left(-\frac{1}{50} \right) \right] + \left[\left(\frac{1024}{125} \right) - \left(\frac{112}{125} \right) \right] ; \qquad = \frac{1909}{250} \text{or} 7.636 \text{or} 7.64$	dM1; A1	
(d)	$Var(Y) = "\frac{1909}{250}" - 2.696^{2}$	(4) M1	
	= 0.367584 awrt <u>0.368</u>	A1 (2)	
(e)	$\frac{1}{2}(y-1) \times \frac{6}{25}(y-1) = 0.1 \underline{\text{or}} \int_{1}^{x} \frac{6}{25}(y-1) dy = 0.1$	M1	
	$\frac{1}{2}(y-1) \times \frac{6}{25}(y-1) = 0.1 \underline{\text{or}} \frac{6}{25} \left[\left(\frac{x^2}{2} - x \right) + \frac{1}{2} \right] = 0.1 \underline{\text{or}} \frac{6}{50}(x-1)^2 = 0.1$	A1	
	$(y-1)^2 = \frac{5}{6} \text{ or } y = 1 \pm \sqrt{\frac{5}{6}}$; $y = 1.9128$ awrt <u>1.91</u>	dM1; A1	
		(4) Total 15	
	Notes		

- (a) M1: the two parts must be the right shape and not joined. Ignore labels and condone if it goes below x axis A1: for 6/25, 12/25, 1, 2 and 4 and must not go beyond 4 or < 1 [Can allow "freehand" straight line]
- (b) 1st M1: for attempting to differentiate $y^n \to y^{n-1}$ for n = 2 or 3 2nd M1: for equating their differential $(\neq f(y))$ to zero and an attempt at solving so must reach y = ...A1: for $\frac{8}{3}$ oe and allow awrt 2.67 If y = 0 is seen it must be rejected.
- (c) 1^{st} M1: for using $\int y^2 f(y)$ for both parts, and an attempt at integration (some $y^n \to y^{n+1}$) Ignore limits. 1^{st} A1: for correct integration for both parts. Ignore limits. 2^{nd} dM1: dep on 1^{st} M1for adding the 2 parts together and substituting the correct limits in to each part. 2^{nd} A1: allow 7.64 or 7.636 You will need to check that they have used algebraic integration.
- (d) M1: for "their part(c)" -2.696^2 A1: for awrt 0.368
- (e) 1^{st} M1: allow $\frac{1}{2}t \times \frac{6}{25}(t-1) = 0.1$ or $\int_{1}^{x} \frac{6}{25}(y-1) \, dy = 0.1$ and some integration and sub' of 1 and x 1st A1: for a correct equation in any form

2nd dM1: dependent on 1st M1 for a correct method for solving their equation. Implied by correct answer. 2nd A1: for awrt 1.91 (second solution should be rejected)

Question Number	Scheme			Marks	
4.	[A = the number on the ball] $P(A=1) = \frac{2}{9}$ $P(A=2) = \frac{1}{3}$ $P(A=5) = \frac{4}{9}$			B1	
(i)				M1	
	$(1,1,5) \frac{2}{9} \times \frac{2}{9} \times \frac{4}{9} \times 3 = \frac{16}{243} \qquad \underline{\text{or}} \qquad (1,5,5) \frac{2}{9} \times \frac{4}{9} \times \frac{4}{9} \times 3 = \frac{32}{243}$			M1	
	$(1,2,5)$ $\frac{2}{9} \times \frac{1}{3} \times \frac{4}{9} \times 6 = \frac{16}{81}$				M1
	$P(B=4) = \frac{16}{243} + \frac{32}{243} + \frac{16}{81} = \frac{32}{\underline{81}}$				A1
(ii)	$P(B=0) = \left(\frac{2}{9}\right)^{3} + \left(\frac{1}{3}\right)^{3} + \left(\frac{4}{9}\right)^{3} = \frac{11}{81}$			M1	
	$P(B=1) = 3 \times \frac{2}{9} \times \left(\frac{1}{3}\right)^{2} + 3 \times \frac{1}{3} \times \left(\frac{2}{9}\right)^{2} = \frac{10}{81} \text{ or } P(B=3) = 3 \times \frac{1}{3} \times \left(\frac{4}{9}\right)^{2} + 3 \times \frac{4}{9} \times \left(\frac{1}{3}\right)^{2} = \frac{28}{81}$			M1	
	$1 - \frac{11}{81} - \frac{10}{81} - \frac{32}{81} = \frac{28}{81} \qquad \underline{\text{or}} 1 - \frac{11}{81} - \frac{28}{81} - \frac{32}{81} = \frac{10}{81}$			M1	
	b 0	1	3	4	B1
	$P(B=b) \frac{11}{81}$	$\frac{10}{81}$	$\frac{28}{81}$	$\frac{32}{81}$	A1
					(10)
	Notes			Total 10	
	B1: for writing or using the 3 correc				
(i)	1 st M1: for identifying the 3 possible samples				
	2nd M1: for $p \times p \times q \times 3$ or $p \times q \times q \times 3$ where p and q are probabilities with $(p+q) < 1$				
	3rd M1: for $p \times q \times r \times 6$ where p, q and r are probabilities with $(p + q + r) = 1$				
	A1: for $\frac{32}{81}$ or awrt 0.395 [Calc: 0.3950617]				
(ii)	1 st M1: for $p^3 + q^3 + r^3$ (for their p ,	q and r)			
	2nd M1: for $3 \times p \times (q)^2 + 3 \times q \times (p)^2$ or $3 \times q \times (r)^2 + 3 \times r \times (q)^2$ (for their p, q and r)				
	3^{rd} M1: for use of all probabilities of $P(B = b)$ adding to 1 [Must have 3, 4 or 5 values for b]				
	B1: for ranges 0, 1, 3 and 4 with none omitted and no extras. Allow extras if assigned probability of 0				
gg to to	A1: for a fully correct probability distribution. If A0 scored in (i) and all other marks scored in (ii) and correct prob's for 2 values of b: award A1 in (ii)				
SC A0 in (i)	If AU scored in (1) and all other marks	scored in (ii) and co	orrect prob's for 2	values of b : award A	Al ın (ii)

Question Number	Scheme	Marks	
5 (a)(i)	If $y = 0$ then $1 - (\alpha + \beta y^2) = 0$ $\therefore \alpha = 1$ *	B1cso	
(ii)	If $y = 5$ then $1 - (\alpha + \beta y^2) = 1$		
	$1+25\beta=0 \therefore \beta=-\frac{1}{25} \qquad *$	B1cso (2)	
(b)	$F(y) = \frac{1}{25}y^2$ so $f(y) = \frac{dF(y)}{dy} = \frac{2}{25}y$	M1	
	$ \therefore [f(y)] = \begin{cases} \frac{2}{25}y & 0 \leq y \leq 5\\ 0 & \text{otherwise} \end{cases} $	A1	
	(U otherwise	(2)	
(c)	$\left[P\left(R > \frac{11}{5}\right) = P\left(Y > \frac{5}{3}\right) = 1 - \frac{1}{25} \times \left(\frac{5}{3}\right)^2 = \frac{8}{9} \text{ oe} \right]$	(2) B1	
	$\frac{3d - \frac{11}{5}}{3d - d} = \frac{8}{9} \text{ oe } \frac{\frac{11}{5} - d}{3d - d} = \frac{1}{9} \text{ oe}$	M1	
	$d = \frac{9}{5} \text{oe}$	A1 (2)	
(d)	$P\left(Y < \frac{11}{5}\right) = \frac{121}{625}$ or 0.1936	(3) B1	
	[Let G = the number of spins with distance < 2.2 m] $ [P(G \ge 5) =] $		
	$\left[\left(\frac{1}{9} \right)^{3} \times \left(\frac{121}{625} \right)^{3} + 3 \times \left(\frac{1}{9} \right)^{2} \times \left(\frac{8}{9} \right) \times \left(\frac{121}{625} \right)^{3} + 3 \times \left(\frac{1}{9} \right)^{3} \times \left(\frac{121}{625} \right)^{2} \times \left(\frac{504}{625} \right) \right]$	M1, M1	
	= $0.000\ 373226$ awrt $0.000\ 373$	A1	
		(4)	
	Notes	Total 11	
	11000		

- (a) (i) **B1:** for stating or using the fact that when y = 0 then $\alpha + \beta y^2 = 1$
 - (ii) **B1:** for stating or using that when y = 5 then $\alpha + \beta y^2 = 0$ and setting up the equation leading to $\beta = -\frac{1}{25}$
 - **(b)** M1: for differentiating. Implied by $\pm \frac{2}{"25"}y$ can ft their value of β

A1: for a fully correct f(y) defined for the whole range.

(c) **B1:** for using F(y) and $\frac{5}{3}$ to find P(Y > $\frac{5}{3}$). Allow $\frac{8}{9}$ or any exact equivalent.

M1: for LHS = p where 0

A1: for $\frac{9}{5}$ or any exact equivalent e.g. 1.8

(d) B1: for $\frac{121}{625}$ or awrt 0.194 This mark could be implied by a correct answer.

1st M1: for $p^3q^3 + np^2(1-p)q^3 + np^3q^2(1-q)$ where p and q are probabilities and n is an integer > 0

2nd M1: for $p^3q^3 + 3p^2(1-p)q^3 + 3p^3q^2(1-q)$ where p and q are probabilities.

A1: for awrt 0.000 373

Question Number	Scheme	Marks		
6. (i)	z = 1.25			
	$\frac{187.5 - \mu}{\sigma} = 1.25$			
	$187.5 - \mu = 1.25\sigma$			
	$\mu = 225 p$	M1		
	$\sigma = \sqrt{225 p(1-p)}$	M1		
	$(187.5 - 225p)^2 = (1.25)^2 \times 225p(1-p)$ or $(150 - 180p)^2 = 225p(1-p)$ (o.e.)	M1		
	e.g. $900(5-6p)^2 = 225(p-p^2) \Rightarrow 4(25-60p+36p^2) = p-p^2$	A1*		
	Leading to $145 p^2 - 241 p + 100 = 0 *$			
(ii)	$\left[(29p - 25)(5p - 4) = 0 \Rightarrow \right] \qquad p = 0.8 \underline{\text{or}} p = \frac{25}{29} \text{ (accept: } 0.862(0689))$			
	[p =] 0.8 because 0.862 gives a mean greater than 188 (oe)			
	Notes Total 1			
(i)				
	1 st M1: for attempting to use a continuity correction i.e. for sight of 188 ± 0.5			
	2nd M1: for standardising using μ and σ or np and $\sqrt{np(1-p)}$ (Condone letter n or any integer > 0)			
	1st A1: for a correct equation with compatible signs, allow 1.250 If using a value for n it must be 225 3rd M1: for $\mu = 225p$ seen at any stage in the working.			
	4th M1: for $\sigma = \sqrt{225p(1-p)}$ seen at any stage in the working. Must be for σ not $\sigma^2 = 225p(1-p)$			
	5th M1: for squaring to get a quadratic equation in p			
	2 nd A1*: dep on all previous Ms and use of 1.25 (with correct sign) for at least 1 correct intermediate step			
(ii)	from a correct quadratic equation e.g one of those in scheme for 5^{th} M1 M1: for solving the quadratic correctly-leading to $p =$ or implied by 0.8 or awrt 0.862 A1: for 0.8 and a correct reason to eliminate 0.862			